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OBJECTIVES:

1. Development of novel electrocatalysts with low Pt loading. 

2. Elucidation of their catalytic action.

PROJECT TIMELINE

Project starting date:  June 1, 2001

First year: Characterization of electrocatalysts and tests in MEAs.

Second year: Optimization; further improvement of CO tolerance; MEA tests; 
reduction of Ru loading; O2 reduction electrocatalysts.

Third year: Characterization and MEA tests; electrocatalysts for methanol 
oxidation.

Success Criteria: Reduced Pt loading by more than 3 times  without sacrificing 
the activity as compared to commercial  catalysts and meeting the DOE targets.



APPROACH   NANOPARTICLE ENGINEERING BY SPONTANEOUS        
DEPOSITION: Ru CORE WITH Pt SUBMONOLAYER SHELL

Pt deposited on Ru 
nanoparticles spontaneously

Nanoparticles used as reducing agents.
Core nanoparticles act as support and co-catalyst.
Tuning of electronic and catalytic properties by 
varying  coverage and cluster size. 
Ultimate reduction of Pt loading.

Spontaneous deposition 
of Pt on Ru(0001)

From 10-4 M H2PtCl6

From 10-2 M H2PtCl6DFT calculations (Kopper et al.) and TPD data (Behm et al.) 
show low CO bonding strength to Pt ML on Ru(0001).
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ACCOMPLISHMENTS

Synthesized the 1%Pt /10%Ru on C catalyst that has at least 3 times larges mass-
specific activity for H2 oxidation as compared to commercial catalysts.

The measurements at LANL in MEA showed that it has the same activity as the 
commercial catalyst which contains 10 times more Pt.

The BNL catalyst shows higher CO tolerance in the RDE but lower in MEA 
measurements than the TKK catalyst (containing 10 times more Pt).

Loadings in anode: 18µg Pt/cm2 + 180 µg Ru/cm2

DOE Target for 2004: 300 µg/cm2 for anode and cathode

Demonstrated the possibility of having a catalyst for O2 reduction with a  monolayer Pt 
coverage on Ru approaching the activity of supported Pt.

Developed a synthesis of carbon-supported W nanoparticles with D. Mahajan, BNL,  
to be used as a core for the Pt or Pt/Ru shell (replacement for Ru). 



TEM PICTURES OF Ru NANOPARTICLES WITH A Pt 
SUBMONOLAYER ON A CARBON SUBSTRATE
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Particle size increased from ~2 nm to ~2.5 nm after Pt deposition



In situ EXAFS OF Pt1/8ML ON Ru NANOPARTICLES

Pt - Ru distance: ~ 2.69 Å 
(as in the alloy) 

Pt coordinated with 4 Ru

No larger Pt islands!

Approaching limiting value for Pt dispersion. A truly full 
catalyst utilization possible.
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In collaboration with 
Balasubramanian and McBreen



CHARACTERIZATION OF ELECTROCATALYSTS IN 
A THIN FILM RDE: H2 and H2/CO OXIDATION

j0exp(2.3 η/b)
j(η,ω) =                                  

1+ j0exp(2.3 η/b)/Bc √ω

j0 (1- θCO)n exp(2.3 η/b)
j(η,ω) =                                  

1+ j0 (1- θCO)n exp(2.3 η/b)/Bc (1- θCO)n √ω

No Nafion® film needed to make a thin-film RDE!

Kinetic parameters determined by nonlinear fitting of the entire polarization curve



COMPARISON OF H2 OXIDATION ON THREE 
ELECTROCATALYSTS
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COMPARISON OF THREE ELECTROCATALYSTS 
FOR CO TOLERANCE
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O2 REDUCTION ON BARE and 1.5 ML Pt-COVERED Ru(0001) IN 0.05M H2SO4

EXAFS (J. McBreen et al.) showed a lower PtOH formation on Pt in PtRu alloy than on bare 
Pt. DFT calculation (Kopper et al.) also suggest lower PtOH formation in Pt ML on Ru. 
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E  /  V  vs RHE 
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Interaction with Catalysts Manufacturers :
Initial contacts with E-TEK, and Microcoating Technologies Inc. 
and FCC & I Inc.

Other Collaboration:
Los Alamos National Laboratory

Answers to the previous review:
“..Ru is expensive..” - the effort to make the W or other metal  
core/ Pt or Pt-Ru shell electrocatalyst by the same approach is 
underway. (Currently, Pt is seven times more expensive that 
Ru)

“..MEA tests at LANL..” – First tests done.



FUTURE PLANS DEPOSITING Pt 
MONOLAYER ON Au(111) BY 

REPLACING THE Cu UPD 
ADLAYER
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No step edge effects

Improvement of the Pt/Ru catalyst:

1.   Optimization of the Pt submonolayer/Ru 
electrocatalyst for MEAs.

2. Codeposition of submonolayers of Pt and other 
noble metals (surface combinatorial synthesis)

Replacement of Ru

1. Pt or Pt and Ru on W or other valve metal 
nanoparticles by spontaneous deposition

2. Pt or Pt and other noble metals on Au 
nanoparticles by replacing Cu adlayer 
Au nanoparticles active for CO oxidation in gas phase 
(Haruta; Goodman et al.)

320x320 nm

105x105 nm


